199 research outputs found

    CRF and urocortin peptides as modulators of energy balance and feeding behavior during stress.

    Get PDF
    Early on, corticotropin-releasing factor (CRF), a hallmark brain peptide mediating many components of the stress response, was shown to affect food intake inducing a robust anorexigenic response when injected into the rodent brain. Subsequently, other members of the CRF signaling family have been identified, namely urocortin (Ucn) 1, Ucn 2, and Ucn 3 which were also shown to decrease food intake upon central or peripheral injection. However, the kinetics of feeding suppression was different with an early decrease following intracerebroventricular injection of CRF and a delayed action of Ucns contrasting with the early onset after systemic injection. CRF and Ucns bind to two distinct G-protein coupled membrane receptors, the CRF1 and CRF2. New pharmacological tools such as highly selective peptide CRF1 or CRF2 agonists or antagonists along with genetic knock-in or knock-out models have allowed delineating the primary role of CRF2 involved in the anorexic response to exogenous administration of CRF and Ucns. Several stressors trigger behavioral changes including suppression of feeding behavior which are mediated by brain CRF receptor activation. The present review will highlight the state-of-knowledge on the effects and mechanisms of action of CRF/Ucns-CRF1/2 signaling under basal conditions and the role in the alterations of food intake in response to stress

    Stress-related alterations of visceral sensation: animal models for irritable bowel syndrome study.

    Get PDF
    Stressors of different psychological, physical or immune origin play a critical role in the pathophysiology of irritable bowel syndrome participating in symptoms onset, clinical presentation as well as treatment outcome. Experimental stress models applying a variety of acute and chronic exteroceptive or interoceptive stressors have been developed to target different periods throughout the lifespan of animals to assess the vulnerability, the trigger and perpetuating factors determining stress influence on visceral sensitivity and interactions within the brain-gut axis. Recent evidence points towards adequate construct and face validity of experimental models developed with respect to animals' age, sex, strain differences and specific methodological aspects such as non-invasive monitoring of visceromotor response to colorectal distension as being essential in successful identification and evaluation of novel therapeutic targets aimed at reducing stress-related alterations in visceral sensitivity. Underlying mechanisms of stress-induced modulation of visceral pain involve a combination of peripheral, spinal and supraspinal sensitization based on the nature of the stressors and dysregulation of descending pathways that modulate nociceptive transmission or stress-related analgesic response

    Yin and Yang - the Gastric X/A-like Cell as Possible Dual Regulator of Food Intake

    Get PDF
    Ingestion of food affects secretion of hormones from enteroendocrine cells located in the gastrointestinal mucosa. These hormones are involved in the regulation of various gastrointestinal functions including the control of food intake. One cell in the stomach, the X/A-like has received much attention over the past years due to the production of ghrelin. Until now, ghrelin is the only known orexigenic hormone that is peripherally produced and centrally acting to stimulate food intake. Subsequently, additional peptide products of this cell have been described including desacyl ghrelin, obestatin and nesfatin-1. Desacyl ghrelin seems to be involved in the regulation of food intake as well and could play a counter-balancing role of ghrelin's orexigenic effect. In contrast, the initially proposed anorexigenic action of obestatin did not hold true and therefore the involvement of this peptide in the regulation of feeding is questionable. Lastly, the identification of nesfatin-1 in the same cell in different vesicles than ghrelin extended the function of this cell type to the inhibition of feeding. Therefore, this X/A-like cell could play a unique role by encompassing yin and yang properties to mediate not only hunger but also satiety

    Gut-Brain Neuroendocrine Signaling Under Conditions of Stress—Focus on Food Intake-Regulatory Mediators

    No full text
    The gut-brain axis represents a bidirectional communication route between the gut and the central nervous system comprised of neuronal as well as humoral signaling. This system plays an important role in the regulation of gastrointestinal as well as homeostatic functions such as hunger and satiety. Recent years also witnessed an increased knowledge on the modulation of this axis under conditions of exogenous or endogenous stressors. The present review will discuss the alterations of neuroendocrine gut-brain signaling under conditions of stress and the respective implications for the regulation of food intake

    The bile acid TGR5 membrane receptor: From basic research to clinical application

    Get PDF
    AbstractThe TGR5 receptor (or GP-BAR1, or M-BAR) was characterized ten years ago as the first identified G-coupled protein receptor specific for bile acids. TGR5 gene expression is widely distributed, including endocrine glands, adipocytes, muscles, immune organs, spinal cord, and the enteric nervous system. The effect of TGR5 activation depends on the tissue where it is expressed and the signalling cascade that it induces. Animal studies suggest that TGR5 activation influences energy production and thereby may be involved in obesity and diabetes. TGR5 activation also influences intestinal motility. This review provides an overview of TGR5-bile acid interactions in health as well as the possible involvement of TGR5 in human disease

    Chronic Early-life Stress in Rat Pups Alters Basal Corticosterone, Intestinal Permeability, and Fecal Microbiota at Weaning: Influence of Sex.

    Get PDF
    Background/aimsWistar rat dams exposed to limited nesting stress (LNS) from post-natal days (PND) 2 to 10 display erratic maternal behavior, and their pups show delayed maturation of the hypothalamic-pituitary-adrenal axis and impaired epithelial barrier at PND10 and a visceral hypersensitivity at adulthood. Little is known about the impact of early life stress on the offspring before adulthood and the influence of sex. We investigated whether male and female rats previously exposed to LNS displays at weaning altered corticosterone, intestinal permeability, and microbiota.MethodsWistar rat dams and litters were maintained from PND2 to 10 with limited nesting/bedding materials and thereafter reverted to normal housing up to weaning (PND21). Control litters had normal housing. At weaning, we monitored body weight, corticosterone plasma levels (enzyme immunoassay), in vivo intestinal to colon permeability (fluorescein isothiocyanate-dextran 4 kDa) and fecal microbiota (DNA extraction and amplification of the V4 region of the 16S ribosomal RNA gene).ResultsAt weaning, LNS pups had hypercorticosteronemia and enhanced intestinal permeability with females > males while body weights were similar. LNS decreased fecal microbial diversity and induced a distinct composition characterized by increased abundance of Gram positive cocci and reduction of fiber-degrading, butyrate-producing, and mucus-resident microbes.ConclusionsThese data indicate that chronic exposure to LNS during the first week post-natally has sustained effects monitored at weaning including hypercorticosteronemia, a leaky gut, and dysbiosis. These alterations may impact on the susceptibility to develop visceral hypersensitivity in adult rats and have relevance to the development of irritable bowel syndrome in childhood

    Vasculature in the mouse colon and spatial relationships with the enteric nervous system, glia, and immune cells

    Get PDF
    The distribution, morphology, and innervation of vasculature in different mouse colonic segments and layers, as well as spatial relationships of the vasculature with the enteric plexuses, glia, and macrophages are far from being complete. The vessels in the adult mouse colon were stained by the cardiovascular perfusion of wheat germ agglutinin (WGA)-Alexa Fluor 448 and by CD31 immunoreactivity. Nerve fibers, enteric glia, and macrophages were immunostained in the WGA-perfused colon. The blood vessels entered from the mesentery to the submucosa and branched into the capillary networks in the mucosa and muscularis externa. The capillary net formed anastomosed rings at the orifices of mucosa crypts, and the capillary rings surrounded the crypts individually in the proximal colon and more than two crypts in the distal colon. Microvessels in the muscularis externa with myenteric plexus were less dense than in the mucosa and formed loops. In the circular smooth muscle layer, microvessels were distributed in the proximal, but not the distal colon. Capillaries did not enter the enteric ganglia. There were no significant differences in microvascular volume per tissue volume between the proximal and distal colon either in the mucosa or muscularis externa containing the myenteric plexus. PGP9.5-, tyrosine hydroxylase-, and calcitonin gene-related peptide (CGRP)-immunoreactive nerve fibers were distributed along the vessels in the submucosa. In the mucosa, PGP9.5-, CGRP-, and vasoactive intestinal peptide (VIP)-immunoreactive nerves terminated close to the capillary rings, while cells and processes labeled by S100B and glial fibrillary acidic protein were distributed mainly in the lamina propria and lower portion of the mucosa. Dense Iba1 immunoreactive macrophages were closely adjacent to the mucosal capillary rings. There were a few macrophages, but no glia in apposition to microvessels in the submucosa and muscularis externa. In conclusion, in the mouse colon, (1) the differences in vasculature between the proximal and distal colon were associated with the morphology, but not the microvascular amount per tissue volume in the mucosa and muscle layers; (2) the colonic mucosa contained significantly more microvessels than the muscularis externa; and (3) there were more CGRP and VIP nerve fibers found close to microvessels in the mucosa and submucosa than in the muscle layers

    Multiple Beneficial Effects of Ghrelin Agonist, HM01 on Homeostasis Alterations in 6-Hydroxydopamine Model of Parkinson’s Disease in Male Rats

    Get PDF
    Background and objective: Developing therapy for non-motor symptoms of Parkinson’s disease (PD) is important for improving patients’ quality of life. Previously, we reported that the ghrelin receptor agonist, HM01 normalized the decreased 4-h fecal output and levodopa-inhibited gastric emptying in 6-OHDA rats, and activated selective areas in brain and spinal cord. In this study, we evaluated whether chronic HM01 treatment influences motor functions and/or has beneficial effects on non-motor symptoms including alterations of body weight and composition, defecation, feeding and water intake in 6-OHDA rats.Methods: Male rats were microinjected unilaterally into the medial forebrain bundle with either vehicle or 6-OHDA. Three weeks later, we assessed basal body weight, and 24-h fecal output (pellets, weight, dry weight and water content), water intake and food intake (ingested and spillage). Then, HM01 (3 mg/kg) or vehicle was given per gavage daily for 10–12 days and the same parameters were re-assessed daily. Motor behavior (stepping and rotations tests), body composition were monitored before and after the HM01 treatment.Results: 6-OHDA rats showed motor deficits in rotation test induced by apomorphine and stepping test. They also displayed a significant reduction in body weight, water consumption, fecal weight and water content and an increase in food spillage compared to vehicle microinjected rats. Daily oral treatment of HM01 did not modify motor alterations compared to vehicle but significantly increased the body weight, fat mass, and 24-h fecal weight, fecal water content, food and water intake in 6-OHDA rats, while HM01 had no significant effect in vehicle microinjected rats. Fecal weight and water content were both correlated with water intake, but not with food intake. Fat mass, but not body weight, was correlated with food intake. HM01 effects were significant after 24 h and remained similar during the treatment.Conclusions: Chronic treatment with ghrelin agonist, HM01 improved several non-motor symptoms in the rat PD model induced by 6-OHDA lesion including the decrease in body weight, water consumption, fecal weight and water content, and increased food intake while not improving the motor deficits. These findings provide pre-clinical evidence of potential benefits of ghrelin agonists to alleviate non-motor symptoms in PD patients

    The newly developed CRF1-receptor antagonists, NGD 98-2 and NGD 9002, suppress acute stress-induced stimulation of colonic motor function and visceral hypersensitivity in rats.

    Get PDF
    Corticotropin releasing factor receptor 1 (CRF1) is the key receptor that mediates stress-related body responses. However to date there are no CRF1 antagonists that have shown clinical efficacy in stress-related diseases. We investigated the inhibitory effects of a new generation, topology 2 selective CRF1 antagonists, NGD 98-2 and NGD 9002 on exogenous and endogenous CRF-induced stimulation of colonic function and visceral hypersensitivity to colorectal distension (CRD) in conscious rats. CRF1 antagonists or vehicle were administered orogastrically (og) or subcutaneously (sc) before either intracerebroventricular (icv) or intraperitoneal (ip) injection of CRF (10 µg/kg), exposure to water avoidance stress (WAS, 60 min) or repeated CRD (60 mmHg twice, 10 min on/off at a 30 min interval). Fecal pellet output (FPO), diarrhea and visceromotor responses were monitored. In vehicle (og)-pretreated rats, icv CRF stimulated FPO and induced diarrhea in >50% of rats. NGD 98-2 or NGD 9002 (3, 10 and 30 mg/kg, og) reduced the CRF-induced FPO response with an inhibitory IC50 of 15.7 and 4.3 mg/kg respectively. At the highest dose, og NGD 98-2 or NGD 9002 blocked icv CRF-induced FPO by 67-87% and decreased WAS-induced-FPO by 23-53%. When administered sc, NGD 98-2 or NGD 9002 (30 mg/kg) inhibited icv and ip CRF-induced-FPO. The antagonists also prevented the development of nociceptive hyper-responsivity to repeated CRD. These data demonstrate that topology 2 CRF1 antagonists, NGD 98-2 and NGD 9002, administered orally, prevented icv CRF-induced colonic secretomotor stimulation, reduced acute WAS-induced defecation and blocked the induction of visceral sensitization to repeated CRD
    • …
    corecore